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Abstract

Motivation: DNA N4-methylcytosine (4mC) is a crucial epigenetic modification. However, the knowledge about its
biological functions is limited. Effective and accurate identification of 4mC sites will be helpful to reveal its biological
functions and mechanisms. Since experimental methods are cost and ineffective, a number of machine learning-
based approaches have been proposed to detect 4mC sites. Although these methods yielded acceptable accuracy,
there is still room for the improvement of the prediction performance and the stability of existing methods in prac-
tical applications.

Results: In this work, we first systematically assessed the existing methods based on an independent dataset. And
then, we proposed DNA4mC-LIP, a linear integration method by combining existing predictors to identify 4mC sites
in multiple species. The results obtained from independent dataset demonstrated that DNA4mC-LIP outperformed
existing methods for identifying 4mC sites. To facilitate the scientific community, a web server for DNA4mC-LIP was
developed. We anticipated that DNA4mC-LIP could serve as a powerful computational technique for identifying 4mC
sites and facilitate the interpretation of 4mC mechanism.
Availability and implementation: http://i.uestc.edu.cn/DNA4mC-LIP/.
Contact: hlin@uestc.edu.cn or hj@uestc.edu.cn or chenweiimu@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is one of the most phylogenetically widespread
epigenetic modifications (Jones, 2012; Rathi et al., 2018). Without
altering the underlying DNA sequence, DNA methylation vastly
expands the information content and structural complexity of DNA
(Jaenisch and Bird, 2003; Jurkowska et al., 2011; Li et al., 2019).
The methylation process was catalyzed by DNA methyltransferases,
in which the methyl group (CH3) was added to a certain target base
(Bart et al., 2005; Chen et al., 2016; Li et al., 2019; Poh et al., 2016;
Smith and Meissner, 2013). The 6-methyladenone (6mA), 5-methyl-
cytosine (5mC) and 4-methylcytosine (4mC) are three most common
and major modification observed in both prokaryotic and eukaryot-
ic genomes (Liang et al., 2018; Ratel et al., 2006; Unger and Venner,
1966; Vanyushin et al., 1968, 1970). DNA 6mA is ubiquitous in

prokaryotic genomes and involves in the regulation of diverse piv-
otal biological processes. 6mA not only protects the host DNA
against degradation by restriction enzymes through distinguishing
the host DNA from foreign pathogenic DNA, but also involves in
bacterial DNA replication and repair, cell-cycle progression and
gene regulation (Casadesus and Low, 2006; Collier et al., 2007;
Heyn and Esteller, 2015; Loenen et al., 2014; Lu, 1994; Luo et al.,
2015; Messer and Noyer-Weidner, 1988; Pingoud et al., 2014;
Pleska et al., 2016; Rao et al., 2014; Wion and Casadesús, 2006). In
eukaryotic organisms, 5mC plays important roles in crucial bio-
logical processes, such as the regulation of gene expression, develop-
ment, normal cognitive function, the inactivation of X-chromosome
and so on (Bergman et al., 2003; Csankovszki et al., 2001; Li et al.,
1993; Moore et al., 2013; Scarano et al., 2005; Tao et al., 2011;
Zhang et al., 2006). In contrast, 4mC modification, which is a
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member of the restriction modification systems, plays a supplemen-
tary role by correcting DNA replication errors and controlling DNA
replication and cell cycle (Cheng, 1995; Modrich, 1991). However,
compared with 6mA and 5mC, our knowledge about the functions
of 4mC modification is still far from sufficient (Schweizer, 2008). In
order to further reveal function and regulatory mechanism of 4mC,
it is vital to detect its distribution in the genome.

Owing to the development of high throughout sequencing tech-
nique, two main experimental methods including single-molecule
and real time (SMRT) sequencing and 4mC-Tet-assisted bisulfite-
sequencing (4mC-TAB-seq) have been proposed to detect 4mC sites
(Flusberg et al., 2010; Yu et al., 2015). SMRT sequencing was
designed to directly detect DNA methylation regardless of whether
an assembled genome exists or not, and it has been successfully
applied for detecting 4mC modifications in several species (Flusberg
et al., 2010). Although this method fills a gap for detecting 4mC
modifications in experimental analysis, SMRT is still not a good so-
lution to analyze thousands of genomes already exist in the public
domain (Yu et al., 2015). To address this issue, 4mC-TAB-seq, a
next-generation sequencing method, was proposed to accurately un-
cover the genome-wide locations of 4mC for bacterial. Although
those approaches provide important information and facilitate the
detection of 4mC, they are still time-consuming and expensive, espe-
cially in performing the genome-wide detection. Therefore, develop-
ing efficient and accurate computational tools are necessary.

To this end, several machine learning based methods have been
proposed to detect 4mC sites in multiple species, including
Caenorhabditis elegans (C.elegans), Drosophila melanogaster
(D.melanogaster), Arabidopsis thaliana (A.thaliana), Escherichia
coli (E.coli), Geoalkalibacter subterraneus (G.subterraneus) and
Geobacter pickeringii (G.pickeringii). Since the first computational
tool, namely iDNA4mC was proposed for identifying DNA 4mC
sites (Chen et al., 2017), the 4mCPred (He et al., 2019), 4mCPred-
SVM (Wei et al., 2019), 4mCPred-IFL (Wei et al., 2019) and Meta-
4mCPred (Manavalan et al., 2019) were proposed in succession. All
of these methods were trained and validated based on the same
benchmark datasets proposed by Chen et al. (2017). As the pioneer
work, the iDNA4mC extracted both nucleotide chemical properties
and nucleotide frequency from the sequences as features to build the
support vector machine (SVM) model. Although iDNA4mC met
quite satisfactory performance, the new predictor 4mCPred achieved
much higher accuracy. In 4mCPred, the DNA sequences were firstly
encoded by position-specific trinucleotide propensity (PSTNP) and
electron-ion interaction potential, and then the F-score based feature
selection method was used to select optimal features used as the in-
put of SVM (Meng et al., 2018). Later on, Zou et al. proposed a
new predictor called 4mCPred-IFL, in which a two-step feature opti-
mization strategy was used to filtered out the noisy features obtained
based on sequence information. More recently, by using a feature
combination method, Lee et al. developed a meta-predictor, named
Meta-4mCPred. Meta-4mcPred integrated two-layer machine learn-
ing algorithms with more informative sequential features to over-
come the limits of generalizability.

Although the prediction performance assessment of these meth-
ods is acceptable as indicated by cross-validation test, the prediction
versus accommodation and risk of over-fitting cannot be sufficiently
assessed by cross-validation test. Obviously, one emerging critical
issue for the state-of-the-art predictors is the lack of systematic as-
sessment based on independent dataset. On the other hand, although
the above-mentioned methods yielded promising results, there is still
room for the improvement of prediction performance.

Notably, all these methods took advantages of distinct features
to represent DNA sequences. It is likely that some of the features
may be complementary to each other. Keeping this in mind, in the
present work, we proposed a novel meta-predictor, called
DNA4mC-LIP, by integrating the existing models with a prelimin-
ary optimal weight to improve the performance of identifying 4mC
sites. To the best of our knowledge, DNA4mC-LIP is the first classi-
fier that integrates combining approach in the prediction of 4mC
sites. To demonstrate its performance, the DNA4mC-LIP was ob-
jectively evaluated on independent datasets. The performance

comparisons on the independent datasets illustrated that DNA4mC-
LIP outperforms existing methods for identifying 4mC sites. For the
convenience of scientific community, a freely available web server
was established at http://i.uestc.edu.cn/DNA4mC-LIP/.

2 Materials and methods

2.1 Collection of 4mc prediction methods
By querying the PubMed database with the keywords ‘(N4-methyl-
cytosine) AND (prediction OR identify)’, six predictors for compu-
tationally identifying 4mC sites were available (Table 1). Among
them, five predictors were trained and validated based on the bench-
mark datasets derived from previous work (Chen et al., 2017). This
benchmark datasets includes the 4mC containing sequences from
C.elegans, D.melanogaster, A.thaliana, E.coli, G.subterraneus and
G.pickeringii. The remaining one called 4mCPred-EL was designed
to identify the 4mC sites in mouse genome (Manavalan et al., 2019).
As the result, the five predictors except for 4mCPred-EL were
retained for further analysis. It should be pointed out that the pre-
dictor 4mCPred contains two independent predictors 4mCPred_I
and 4mCPred_II. The 4mCPred_I was constructed by using PSTNP
features. To develop a more powerful model, the 4mCPred_II was
constructed based on a combination of hybrid features including the
optimal PSTNP and electron-ion interaction pseudopotential fea-
tures obtained according to the F-score measurements (He et al.,
2019).

2.2 Independent datasets construction
In this study, we employed the independent datasets from the previ-
ous work to objectively evaluate the proposed method and its coun-
terparts (Manavalan et al., 2019). The independent datasets
including the 4mC containing sequences from the above mentioned
six species and were constructed with the same protocol as that of
iDNA4mC (Chen et al., 2017). All the positive samples obtained
from the MethSMRT database were 41 bp long with the 4mC sites
in the center (Ye et al., 2017). On the other hand, the negative sam-
ples had the same length with the unmethylated cytosine in the cen-
ter and shared the equal numbers with the positive samples for each
species. Moreover, the sequence identity for both positive and nega-
tive samples are less than 70%. For a fair comparison, the samples
that couldn’t be predicted by any of the six predictors were
removed. The final information of the independent datasets was
reported in Table 2. For the convenience of the following analysis,
the independent test data from the mouse genome (Manavalan
et al., 2019) were also included in this study.

2.3 Evaluation the prediction performance
The area under the receiver operating characteristic curve (AUC) is
an objective metric for model evaluation and has been were widely
used to fully measure the performance of prediction models (Kang
et al., 2019; Xu et al., 2019). Considering that iDNA4mC has only
one model for detecting 4mC sites across the different species, it was
not compared with the state-of-the-art predictors in the work of
Meta-4mCPred (Manavalan et al., 2019). Actually, iDNA4mC was
trained with the merged benchmark dataset containing six species,
and it has the capability to identify 4mC sites for these species.
Therefore, all the predictors were evaluated by using AUC on the in-
dependent datasets. Based on the prediction scores, we calculated
the AUC by the ‘pROC’ package in R.

2.4 Model construction with iterative integration of

predictors
Multiple predictor integration method has been used in the realm of
bioinformatics, such as PhD7Faster, PrDSM and iRSpot-Pse6NC2.0
and so on (Cheng et al., 2019; Huang et al., 2019; Ru et al., 2014;
Yang et al., 2019), and demonstrated its better superiority than sin-
gle predictor. Therefore, in the present work, the six predictors (i.e.
iDNA4mC, 4mCPred_I, 4mCPred_II, 4mcPred-SVM, 4mcPred-IFL
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and Meta-4mCpred) were used to construct an ensemble predictor
through a linear integration strategy.

For a given species, the workflow of integrating predictors was
shown in Fig. 1. The integration process was started from the pre-
dictor with the highest AUC, and iteratively combined with the
other five predictors. For each round of iteration, we integrated one
predictor that could maximize the value of AUC into the ensemble
predictor. The predictors were combined based on the preliminary
weighted summing of their prediction scores, where the preliminary
weight of each single predictor was optimized and updated for every
possible predictor combination at each round of iteration.
Moreover, the preliminary weight of each single predictor was
ranged from 0.05 to 1 with a step of 0.05. At last, the combination
predictors with the highest AUC were chosen to construct our inte-
grated predictors. Their weights were normalized when dividing in-
dividual preliminary weight by the sum of six predictors’
preliminary weight to scale the prediction scores of combination
predictors to 0–1, and the weight normalized formula as showed Eq.
(1).

ui ¼ xi=
X6

i¼1
xi; (1)

where the value i ranges from 1 to 6 corresponding to ith predictor
that added to the integrated predictors. So, the xi and the ui was the
preliminary and normalized weight of the ith predictor that inte-
grated into the ensemble predictor, respectively. Finally, the ensem-
ble predictor for identifying 4mC sites in each species was defined
by Eq. (2).

P ¼
X6

i¼1
ui � pi; (2)

where the pi was the ith predictor that added to the integrated pre-
dictors, and ui was its normalized weight. If the prediction score P
was larger than 0.5, the corresponding sequence was predicted as a
4mC site containing sequence.

3 Result and discussion

3.1 Performance assessment of predictors on

independent datasets
We firstly compared the performance of the above-mentioned six
predictors on the independent datasets. It is likely that the predictors
may have inconsistent accuracy within specific range of probability.
To check this possibility, we first sorted the prediction scores and
stratified the results into the top 25% and last 25%, and further
investigated the accuracy between these two groups across six spe-
cies for six predictors. The results are shown in Fig. 2. Most of the
predictors showed slight worse performance for predicting the last
25% group than the top 25% group in C.elegans, G.pickeringii and
G.subterraneus. In the other three species, there was no preference
in the majority of predictors between these two groups.
Interestingly, we also noted that iDNA4mC had better ability to pre-
dict non-4mC sites in all species except in C.elegans.

As demonstrated by Lee et al. (Manavalan et al., 2019), the
Meta-4mCPred performed better than the 4mCPred in terms of ac-
curacy for identifying 4mC sites in A.thaliana, D.melanogaster,

G.subterraneus and G.pickeringii. However, from the aspect of
stratified accuracy, the performance of Meta-4mCPred was better
than 4mCPred only in G.pickeringii and E.coli. That is to say, the
accuracy was not suitable for intuitively evaluating the overall
performances.

To address this issue, we analyzed the ROC curves with their
AUC of the above-mentioned six predictors on the independent
datasets (Fig. 3). As shown in Fig. 3, all of the six predictors
achieved AUC higher than 0.6 for identifying 4mC sites in the six
species, suggesting their contributions for the prediction of 4mC
sites. Besides, all the six predictors yielded the AUC higher than 0.9
for identifying 4mC sites in C.elegans. It was also observed that
these predictors exhibit distinct performance for identifying 4mC
sites in different species. For example, the performance of
4mCPred_II is the best for identifying 4mC sites in A.thaliana, and
C.elegans; the Meta-4mCPred rank the first for identifying 4mC
sites in E.coli and G.pickeringii; the 4mcPred_I and 4mcPred-IFL
rank the first for identifying 4mC sites in D.melanogaster and
G.subterraneus, respectively. Nevertheless, there is no particular
predictor with the best performance for all species.

As a result, the predictors with best performance varied from
species to species. That was very difficult for users to distinguish
which predictor should be used to perform analysis on novel data.
Therefore, a more powerful and robust method was necessary and
warranted for the community to make a better choice.

3.2 Integrate predictors improve the predictive

performance
Multiple classifier integration method is an important pattern classi-
fication technique and can obtain better performance than individ-
ual classifiers (Huang et al., 2017; Kozlowski and Bujnicki, 2012;
Schaduangrat et al., 2019; Tang et al., 2015). Therefore, to improve
the accuracy for identifying 4mC sites, we performed the iterative
combination procedure in the present work. For A.thaliana, the iter-
ation started from the predictor 4mCPred_II that has the highest
AUC. In the second round of iteration, 4mCPred_II was combined
with the predictor Meta-4mCPred and achieved the AUC 0.9208.
The AUC reached the highest value of 0.9250 in the fourth round of
iteration, and the AUC no longer improved by adding the predictor
iDNA4mC in fifth round or predictor 4mCPred-SVM in sixth round
of iteration. After six rounds of iteration, four predictors
(4mCPred_II, Meta-4mCPred, 4mCPred-IFL and 4mCPred_I) with

Table 1. Summary of the predictors for identifying 4mC sites

Predictor Species PubMed ID Published date

iDNA4mC C.elegans, D.melanogaster, A.thaliana, E.coli,

G.subterraneus and G.pickeringii

28961687 November 15, 2017

4mCPred_I As above 30052767 February 15, 2019

4mCPred_II As above 30052767 February 15, 2019

4mcPred-SVM As above 30239627 April 15, 2019

4mcPred-IFL As above 31099381 May 17, 2019

Meta-4mCpred As above 31146255 June 7, 2019

4mCpred-EL M.musculus 31661923 October 28, 2019

Table 2. Summary of the updated independent datasets

Species Original

positives

Original

negatives

Updated

positives

Updated

negatives

A.thaliana 1250 1250 1235 1226

C.elegans 750 750 747 748

D.melanogaster 1000 1000 999 1000

E.coli 134 134 132 132

G.pickeringii 300 300 198 199

G.subterraneus 350 350 350 349

M.musculus 180 180 180 180

DNA4mC-LIP 3329
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the corresponding optimal weights (0.2903, 0.2258, 0.2742 and
0.2097) were integrated. In this case, the best AUC of 0.9250 was
for predicting 4mC sites from A.thaliana, which is better than the
reported AUC of 0.9066 by 4mCPred_II. The same iterative predict-
or combination process was also performed for the other five spe-
cies. The normalized weights (also called contributions) of the single

classifier in each species were summarized in Table 3.
The normalized weight of the best predictor of each species was al-
ways the largest. For example, the normalized weight of the best
predictor 4mcPred-IFL for G.subterraneus was 0.9524, which
showed more than half of the importance for the combination pre-
dictor. These results indicate that, for each species, the combination

Fig. 1. The workflow of integrating predictors. A, B, C, D, E, F represent iDNA4mC, 4mCPred_I, 4mCPred_II, 4mCPred-SVM, 4mcPred-IFL and Meta-4mCPred, respectively.

The xi was the preliminary weight of the ith predictor
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of predictors can always maximize the performance after a series of
iterative processes (Fig. 4). Accordingly, for each species, the com-
bined predictors with highest AUC was called the DNA4mC-LIP.

The predictive results of different methods for identifying 4mC
sites in the independent dataset were listed in Supplementary
Table S1, where the metrics used to measure the performance

were defined as those mentioned in a recent work (Chen et al., 2019).
The AUC of DNA4mC-LIP was 25.13% and 1.84% higher for
A.thaliana, 4.81% and 1.28% higher for C.elegans, 21.64% and
0.73% higher for D.melanogaster, 21.76% and 0.33% higher for
E.coli, 22.8% and 0.81% higher for G.pickeringii, 27.95% and
0.03% higher for G.subterraneus, than the last-ranked and top-
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Fig. 3. Overall performance of six predictors for identifying 4mC sites in independent datasets
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ranked predictors, respectively. We could conclude that the per-
formance of DNA4mC-LIP is better than that of existing methods
for four species (A.thaliana, C.elegans, D.melanogaster and E.coli)
and is comparable with that of the top-ranked predictor Meta-

4mCpred for G.pickeringii and G.subterraneus. For more clarity,
the prediction scores of different methods based on the independ-
ent dataset were shown in Fig. 5. Overall, the performance of the
DNA4mC-LIP outperformed the best single predictor across the

Table 3. The normalized weights of the combined predictors at the highest AUC

Species iDNA4mC 4mCPred_I 4mCPred_II 4mCPred-SVM 4mCPred-IFL Meta-4mCPred

A.thaliana 0.0000 0.2097 0.2903 0.0000 0.2742 0.2258

C.elegans 0.5238 0.0952 0.3810 0.0000 0.0000 0.0000

D.melanogaster 0.0000 0.3333 0.3095 0.0476 0.2143 0.0952

E.coli 0.0000 0.2500 0.1000 0.0000 0.0000 0.6500

G.pickeringii 0.1379 0.2414 0.0000 0.0345 0.0000 0.5862

G.subterraneus 0.0476 0.0000 0.0000 0.0000 0.9524 0.0000
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six species, indicating that the classifier integration method is in-
deed helpful to improve the performance of identifying 4mC sites.

3.3 Cross-species validation
Its interesting to see whether the methods could accurately recognize
the 4mC sites in different species. To this end, we compared the
cross-species performance of DNA4mC-LIP and 4mCpred-EL
(Manavalan et al., 2019) for identifying 4mC sites. The performan-
ces measured by using AUC were shown in Fig. 6, where the top six
rows are for DNA4mC-LIP and the last row is for 4mCpred-EL. It
was found that the species-specific DNA4mC-LIP model obtained
the AUC greater than 0.7 for identifying 4mC sites in other species
except for in C.elegans, and obtained the AUC smaller than 0.5 for
identifying 4mC sites in mouse. It was also noticed that the perform-
ance of 4mCPred-EL trained based on data from mouse was unsatis-
factory for identifying 4mC sites in the other species, and the
obtained AUC are all smaller than 0.5. These results indicate that
there might be species-specific signals surrounding 4mC sites. It is
necessary to extract such features and develop new methods to im-
prove the performance of cross-specific 4mC sites prediction.

3.4 Webserver implementation
For the convenience of researchers, an easy-to-use webserver was
established to implement our predictor, which can be freely accessed
via http://i.uestc.edu.cn/DNA4mC-LIP/. The step-by-step guideline

on how to use the webserver is as following. Firstly, the users can in-
put FASTA format sequences into the input box or upload a file con-
taining FASTA format sequences by clicking the upload button. The
example of FASTA format sequences can be shown by clicking on
the ‘Example’ button. Secondly, select the desired species. To get the
anticipated prediction accuracy, the selected species must be consist-
ent with the source of query sequences. Finally, clicking the ‘Submit’
button to get the predicted results. Moreover, the prediction results
of the other methods as references were shown in the web server.

4 Conclusion

Increasing evidence has suggested a significant role for DNA methy-
lation in human diseases (Issa et al., 1993; Kulis and Esteller, 2010;
Lai et al., 2019; Lyko and Brown, 2005; Nakagawa et al., 2017; Su
et al., 2018; Wilson et al., 2007), which has further propelled the
emergence of DNA methylation sites prediction such as 4mC, 5mC
and 6mA being an active direction in the field of bioinformatics.
Compared with the other kind of DNA methylation, the knowledge
of 4mC is relatively scarcity due to insufficient of experimental
methods. Indeed, given that the large proportion of potential 4mC
sites remains unexplored, the computational approaches are excel-
lent complements to the experimental assays. In this study, we first
systematically evaluated the existing predictors for identifying 4mC
sites on independent datasets. The obtained results based on the
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independent datasets demonstrated that the performance of the best
predictor isn’t stable and varies from species to species.

To address this issue, by integrating existing predictors, an itera-
tive integration method, called DNA4mC-LIP, was proposed to
identify 4mC sites in multiple species. The optimal weight of each
predictor was found by using linear iteration strategy. DNA4mC-
LIP improved the AUC to 0.9250, 0.9470, 0.9720, 0.9280, 0.8770,
0.8979 for identifying 4mC sites in A.thaliana, C.elegans,
D.melanogaster, E.coli, G.pickeringii and G.subterraneus, respect-
ively, which is better than those of existing methods for the same
task. This result indicates that DNA4mC-LIP holds a high poten-
tional to be a useful tool for identifying 4mC sites. In addition, for
the convenience of scientific community, a user-friendly web server
for DNA4mC-LIP was provided at http://i.uestc.edu.cn/DNA4mC-
LIP/. We anticipated that DNA4mC-LIP could serve as a powerful
computational technique for identifying 4mC sites and facilitate the
discovery of novel 4mC sites.
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